基于延时等概率符号化传递熵分析的脑肌耦合双向神经信息传递规律研究The Research of Bidirectional Neural Information Transmission of EEG-EMG Coupling Based on Delay Equal Probability-Symbolized Transfer Entropy
张凯,徐光华,李文平,江开元,田沛源,郑小伟,韩丞丞,张四聪
摘要(Abstract):
为了有效揭示脑肌双向神经传递机制,解决传统分析方法存在的计算复杂度高、动态特征提取能力差等问题,面向手部运动过程脑肌电耦合特征提取任务,提出了延时等概率符号化传递熵脑肌电耦合分析方法,计算了脑肌电神经信息传递时延规律,进行了运动执行过程激活功能区的关联分析,探索了脑肌耦合强度的时序变化规律。通过在线实验表明:人体左右手的脑肌信息传递具有不对称性,且该传递时延约为20~35 ms;运动执行任务中从脑电到肌电(EEG→EMG)过程比肌电到脑电(EMG→EEG)具有更强的传递熵值。同时,在不同耦合方向下,主动运动任务的脑肌电耦合强度显著高于静息状态。研究不仅对现有的脑肌电耦合分析方法进行了改进,提出了延时等概率符号化传递熵分析方法,同时通过在线实验分析,揭示了手部运动任务下脑肌耦合双向神经信息传递规律,为新的康复方案和康复评价方法提供了理论依据,为神经接口技术的发展提供有力的算法支撑。
关键词(KeyWords): 脑肌电耦合;神经传递;传递熵;符号化;神经接口
基金项目(Foundation): 科技创新2030“脑科学与类脑研究”重大项目资助(2021ZD0204300);; 陕西省重点研发计划资助项目(2021GXLH-Z-008);; 中国博士后科学基金资助项目(2022M722543)
作者(Author): 张凯,徐光华,李文平,江开元,田沛源,郑小伟,韩丞丞,张四聪
参考文献(References):
- [1] CHUN M,QIN Haiqiang,TURNBULL I,et al.Heterogeneity in the diagnosis and prognosis of ischemic stroke subtypes:9-year follow-up of 22 000 cases in Chinese adults [J/OL].International Journal of Stroke,2023:17474930231162265 [2022-12-12].https://doi.org/10.1177/17474930231162265.
- [2] SUZUKI H,YAMAMOTO S,WAKATABI M,et al.Post stroke mirror movements preventing performance of bilateral movements and activities of daily living [J].Case Reports in Neurology,2022,14(3):389-396.
- [3] HINSON R M,BERMAN J,FILER W,et al.Offline evaluation matters:investigation of the influence of offline performance on real-time operation of electromyography-based neural-machine interfaces [J].IEEE Transactions on Neural Systems and Rehabilitation Engineering,2023,31:680-689.
- [4] EDELMAN B J,MENG J,SUMA D,et al.Noninvasive neuroimaging enhances continuous neural tracking for robotic device control [J].Science Robotics,2019,4(31):6844.
- [5] ZHANG Kai,XU Guanghua,DU Chenghang,et al.Enhancement of capability for motor imagery using vestibular imbalance stimulation during brain computer interface [J].Journal of Neural Engineering,2021,18(5):056064.
- [6] CHEN Jiaming,WANG Dan,YI Weibo,et al.Filter bank sinc-convolutional network with channel self-attention for high performance motor imagery decoding [J].Journal of Neural Engineering,2023,20(2):026001.
- [7] XU Feng,RIDEN W,FILER W.Evaluation of lumbar muscle activation patterns during trunk movements using high-density electromyography:a preliminary report [C]//2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society.Piscataway,NJ,USA:IEEE,2021:6082-6085.
- [8] MAURA R M,RUEDA PARRA S,STEVENS R E,et al.Literature review of stroke assessment for upper-extremity physical function via EEG,EMG,kinematic,and kinetic measurements and their reliability [J].Journal of NeuroEngineering and Rehabilitation,2023,20(1):21.
- [9] ZHANG Kai,XU Guanghua,CHEN Xiaobi,et al.Symmetric multifractal detrended cross-correlation analysis of EEG and SEMG in the processes of myodynamia changes [C]//2019 IEEE International Conference on Systems,Man and Cybernetics.Piscataway,NJ,USA:IEEE,2019:223-227.
- [10] 陈迎亚.康复运动中脑肌电融合及同步分析方法研究 [D].秦皇岛:燕山大学,2016.
- [11] CHIANG J,WANG Z J,MCKEOWN M J.A multiblock PLS model of cortico-cortical and corticomuscular interactions in Parkinson’s disease [J].NeuroImage,2012,63(3):1498-1509.
- [12] M?LLER A R.Neural plasticity and disorders of the nervous system [M].Cambridge,UK:Cambridge University Press,2006.
- [13] WITHAM C L,RIDDLE C N,BAKER M R,et al.Contributions of descending and ascending pathways to corticomuscular coherence in humans [J].The Journal of Physiology,2011,589(15):3789-3800.
- [14] AL-ANGARI H M,KANITZ G,TARANTINO S,et al.Distance and mutual information methods for EMG feature and channel subset selection for classification of hand movements [J].Biomedical Signal Processing and Control,2016,27:24-31.
- [15] WITHAM C L,RIDDLE C N,BAKER M R,et al.Contributions of descending and ascending pathways to corticomuscular coherence in humans [J].The Journal of Physiology,2011,589(15):3789-3800.
- [16] 牛小辰.康复运动中的脑肌电特征分析 [D].秦皇岛:燕山大学,2015.
- [17] JIN S H,LIN P,HALLETT M.Linear and nonlinear information flow based on time-delayed mutual information method and its application to corticomuscular interaction [J].Clinical Neurophysiology,2010,121(3):392-401.
- [18] SCHREIBER T.Measuring information transfer [J].Physical Review Letters,2000,85(2):461-464.
- [19] 谢平,杨芳梅,陈晓玲,等.基于多尺度传递熵的脑肌电信号耦合分析 [J].物理学报,2015,64(24):248702.XIE Ping,YANG Fangmei,CHEN Xiaoling,et al.Functional coupling analyses of electro encephalogram and electromyogram based on multiscale transfer entropy [J].Acta Physica Sinica,2015,64(24):248702.
- [20] SO W K Y,YANG Lingling,JELFS B,et al.Cross-frequency information transfer from EEG to EMG in grasping [C]//2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).Piscataway,NJ,USA:IEEE,2016:4531-4534.
- [21] 姚文坡.生理时间序列的符号化和非线性特征分析 [D].南京:南京邮电大学,2019.
- [22] 高云园,任磊磊,周旭,等.基于变尺度符号传递熵的多通道脑肌电信号耦合分析 [J].中国生物医学工程学报,2018,37(1):8-16.GAO Yunyuan,REN Leilei,ZHOU Xu,et al.Multichannel EEG-EMG coupling analysis using a variable scale symbolic transfer entropy approach [J].Chinese Journal of Biomedical Engineering,2018,37(1):8-16.
- [23] LI Zhaohui,LI Shuaifei,YU Tao,et al.Measuring the coupling direction between neural oscillations with weighted symbolic transfer entropy [J].Entropy,2020,22(12):1442.
- [24] XU Yuhang,MCCLELLAND V M,CVETKOVIC Z,et al.Delay estimation between EEG and EMG via coherence with time lag [C]//2016 IEEE International Conference on Acoustics,Speech and Signal Processing.Piscataway,NJ,USA:IEEE,2016:734-738.
- [25] KIM B,KIM L,KIM Y H,et al.Cross-association analysis of EEG and EMG signals according to movement intention state [J].Cognitive Systems Research,2017,44:1-9.